
ar
X

iv
:1

60
1.

04
04

9v
2 

 [
m

at
h-

ph
] 

 3
 F

eb
 2

01
6

TOPOLOGICAL RECURSION FOR OPEN INTERSECTION

NUMBERS

BRAD SAFNUK

Abstract. We present a topological recursion formula for calculating the in-
tersection numbers defined on the moduli space of open Riemann surfaces.
The spectral curve is x “

1

2
y2, the same as spectral curve used to calculate

intersection numbers for closed Riemann surfaces, but the formula itself is a
variation of the usual Eynard-Orantin recursion. It looks like the recursion for-
mula used for spectral curves of degree 3, and also includes features present in
β-deformed models. The recursion formula suggests a conjectural refinement
to the generating function that allows for distinguishing intersection numbers
on moduli spaces with different numbers of boundary components.

1. Introduction

In [32], Pandharipande, Solomon and Tessler constructed a rigorous theory of
intersection theory on the moduli space of the disk, and proved that the generating
function for these numbers obey a number of constraint conditions that are direct
analogues of the KdV equation and Virasoro constraints for intersection theory
on moduli spaces of closed Riemann surfaces (c.f. [30, 34, 16]). These constraints
uniquely specify the intersection theory for higher genera intersection numbers, and
led to conjectural equations for the resulting generating functions. In particular,
they conjectured a Virasoro constraint condition, and a solution of an integrable
system that they termed the open KdV equation. Later, it was shown by Buryak
[12] that these two systems of differential equations are, in fact, compatible. In
so doing, he demonstrated that the open KdV equations form a part of a larger
hierarchy, called the Burgers-KdV equations, which he conjectured to be the correct
framework for introducing descendent integrals for the marked points appearing on
the boundary of the surfaces. These conjectures have been proven in [13, 33], with
the caveat that the rigorous construction of the necessary moduli spaces has been
announced by Solomon and Tessler, but as of the writing of this paper, has not yet
appeared.

Alexandrov [1] constructed a solution to the Burgers-KdV hierarchy based on
the Kontsevich-Penner matrix model. The partition function for this matrix model
was shown to satisfy the so-called MKP hierarchy. In addition, Alexandrov [2]
constructed a W -algebra constraint on this function.

In the present work, we take Alexandrov’s W -constraint as the starting point,
and show that it is equivalent to a topological recursion equation for the generating
function of open intersection numbers. We formulate this recursion in two ways:
first as a master equation, in the sense of Kazarian and Zograf [29] (also present in
[20]), and then as a residue calculation.
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2 B. SAFNUK

The spectral curve turns out to be the same as the spectral curve for the Witten-
Kontsevich generating function (c.f. [4, 5]), namely

x “
1

2
z2

y “ z,

however, the topological recursion formula itself is rather unusual, in that it com-
bines aspects of the topological recursion formula for curves with higher order
branch points (c.f. [9, 10, 26]), as well as β-deformed topological recursion, as
constructed in [6, 14].

We also explore a potential refinement of the open intersection numbers by in-
corporating a grading parameter Q, which separates the components of a given
moduli space by the number of boundary components in the underlying surface.
We conjecture that the resulting generating function is given by a parametrized ver-
sion of the Kontsevich-Penner matrix model. If true, it would immediately imply a
quantum curve equation for the principal specialization of the generating function:

ˆ
~
3
d3

dx3
´ 2~x

d

dx
` 2~pQ´ 1q

˙
eΨQ “ 0.

Note that the quantum curve for open intersection numbers (without the Q grading)
is given by substituting Q “ 1.

The paper is organized as follow. In Section 2, we review the recent results
on open intersection numbers and, in particular, Alexandrov’s construction of W -
constraints on the generating function of open intersection numbers. Then, in
Section 3 we introduce the tools and notation used in topological recursion cal-
culations. In Section 4 we formulate the W -constraint condition as an equivalent
system of master equations. In Section 5 we write the master equation as a residue
integral. In Section 6 we conjecture a refinement of the generating function which
tracks the intersection numbers for moduli spaces of surfaces with different numbers
of boundary components. Finally, in Section 7, we derive the quantum curve for
the Q-graded correlators.

Acknowledgement. The author thanks Bertrand Eynard for useful discussions.
During the preparation of this paper, the author received support from the Max
Planck Institute for Mathematics in Bonn, the Institute des Hautes Études Scien-
tifique, and the National Science Foundation through grants 1002477 and DMS-
1308604.

2. Open intersection numbers and Alexandrov’s W-constraints

There are many effective methods for computing so-called descendent integrals
on moduli spaces of closed Riemann surfaces:

xτa1
¨ ¨ ¨ τal

yg “

ż

ĎMg,l

ψa1

1
¨ ¨ ¨ψal

l ,

where ψi is the first chern class of the natural line bundle on ĎMg,l given by taking
the cotangent space of the curve at the i-th marked point. The approach pioneered
by Witten is to collect them into generating functions

FWK

g pT0, T1, . . .q “
8ÿ

n“0

1

n!
xγnyg,
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FWK “
8ÿ

g“0

u2g´2FWK

g ,

τWK “ eF
WK

,

for γ “
ř
Tkτk. He conjectured [34], (proven by Kontsevich [30]) that τWK is

a τ -function for the KdV hierarchy, with KP times ttku given by Tk “ p2k `
1q!!t2k`1. Equivalently, there is a family of differential operators LWK

a (a ě ´1)
that annihilate the generating function:

LWK

n τWK “ 0,

and satisfy the commutation relations of (half of) the Virasoro algebra rLWK
n , LWK

m s “
pn´mqLWK

n`m.
In [32], Pandharipande, Solomon, and Tessler began extending descendent in-

tegration to moduli spaces of open Riemann surfaces, or more precisely, Riemann
surfaces with boundary. In particular, a Riemann surface with boundary pX, BXq
is a 1-dimensional complex manifold with finitely many circular boundaries, each
with a holomorphic collar structure. The double of pX, BXq, denoted DpX, BXq, is
the closed Riemann surface obtained by Schwarz reflection across the boundary of
X . If X has genus g and b boundary components then we define the augmented
genus of X , hpXq “ g ` b{2. The genus of the double of X is given by 2hpXq ´ 1.
We define Mh,k,l to be the moduli space of (possibly open) Riemann surfaces X
with hpXq “ h, k marked points on the boundary of X , and l interior marked
points. We note the slightly different conventions then those used by [32], where in
particular we use parameter hpXq instead of the genus of the doubled surface, and
we consider the moduli space of closed Riemann surfaces Mh,l to be a connected
component of Mh,0,l. It is also worth pointing out that h can be any non-negative
integer or half-integer.

Mh,k,l is a real orbifold of dimension 6h´ 6 ` k ` 2l. At interior marked points
we have cotangent line bundles

Li Ñ ĎMh,k,l i “ 1, . . . , l,

and we wish to consider ψi “ cpLiq P H2p ĎMh,k,lq. Furthermore, one can construct
cotangent line bundles

rLj Ñ ĎMh,k,l j “ 1, . . . , k

for the marked points on the boundary and consider φj “ cprLjq P H2p ĎMh,k,lq.
If such constructions can be made rigorous, then one could calculate descendent

integrals

(2.1) xτa1
. . . τal

σb1 ¨ ¨ ¨σbky
o

h “

ż

ĎMh,k,l

ψa1

1
¨ ¨ ¨ψal

l φ
b1
1

¨ ¨ ¨φbkk ,

and the resulting generating functions

FhpT0, T1, . . . ;S0, S1, . . .q “
8ÿ

k,l“0

1

k!l!
xγkλlyoh

F “
ÿ

2hPZě0

u2h´2Fh

τo “ eF ,
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where γ “
ř
Tjτj and λ “

ř
Sjσj . Although it is not yet possible to define

open intersection numbers in full generality, [32] contains a rigorous treatment for
h “ 0, 1

2
and Si “ 0@i ě 1, while the construction for arbitrary h and Si has been

announced by Solomon and Tessler.
Based on their analysis of descendent integrals on the disk, Pandharipande,

Solomon and Tessler [32] conjectured a Virasoro constraint and open KdV equation
for the generating function of open intersection numbers. In particular, for Z “
τopT0, T1, . . . , S0 “ S, S1 “ 0, S2 “ 0, . . .q they conjectured that

LnZ “ 0 for n “ ´1, 0, . . .,

where

Ln “ ´
p2n` 3q!!

2n`1

B

BTn`1

`
8ÿ

a“0

p2pa` nq ` 1q!!

2n`1p2a´ 1q!!
Ta

B

BTa`n

`
u2

2n`1

ÿ

a`b“n´1

p2a` 1q!!p2b` 1q!!
B2

BTaBTb
` δk,´1u

´2T
2
0

2
` δn,0

1

16

` unS
Bn`1

BSn`1
`

3n` 3

4
un

Bn

BSn

satisfy commutation relations rLn,Lms “ pn´mqLn`m.
In addition, they conjectured that the generating function satisfies the following

open KdV equations

p2n` 1qxxτnyyo “ uxxτn´1τ0yyxxτ0yyo ` 2xxτn´1yyoxxσ0yyo

` 2xxτn´1σ0yy
o

´
u

2
xxτn´1τ

2

0 yy,

where

xxτa1
. . . τal

yy “
B

BTa1

¨ ¨ ¨
B

BTal

FWKpT0, T1, . . .q

xxτa1
. . . τal

σk
0 yy

o

“
B

BTa1

¨ ¨ ¨
B

BTal

Bk

BSk
F opT0, T1, . . . ;S0 “ S, S1 “ 0, S2 “ 0, . . .q.

Many details of the proofs of these conjectures are in [13, 33], with the remaining
part (chiefly the construction of the compact moduli spaces and extensions of the
line bundles to the boundary) announced by Solomon and Tessler.

Independent of the conjectures themselves, Buryak proved [12] that the Vira-
soro constraint and open KdV equations are consistent and compatible with each
other. In so doing, he introduced an extended τ -function with additional parame-
ters S1, S2, . . ., that satisfied the Burgers-KdV hierarchy. He conjectured that these
parameters introduce descendent integration with respect to the cotangent bundles
from the boundary marked points.

Using the solution of the Burgers-KdV hierarchy as the starting point, Alexan-
drov [1, 2] related the generating function of open intersection numbers to the
Kontsevich-Penner matrix model

(2.2) τQ “ detpΛqQC´1

ż

HN

rdΦs exp

ˆ
´Tr

´Φ3

3!
´

Λ2Φ

2
`Q logΦ

¯˙
,
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where Q P Z, Λ “ diagpλ1, . . . , λN q, the integral is over the space of hermitian
N ˆN matrices, and

C “ eTrΛ{3

ż
dΦexp

ˆ
´Tr

ΛΦ2

2

˙
.

In particular, he conjectured that τQ“1 “ τo. Note that τQ“0 “ τWK. In Section 6,
we formulate a conjectural relationship between τQ and a Q-graded refinement of
the open intersection generating function.

Using standard matrix model techniques, Alexandrov constructed families of
operators that annihilate τ1, and satisfy the commutation relations of the W p3q

algebra. He also showed that τ1 is a τ -function for the KP-hierarchy, while the
parameter Q plays the role of a discrete time, making τQ a solution of the modified
KP (MKP) hierarchy (c.f. [3, 27]). Note that the natural KP times ttku are related
to the parameters tTiu, tSiu for the generating function by

Ti “ p2i` 1q!!t2i`1

Si “ 2i`1pi` 1q!t2i`2.

For the W -constraints of τ1, we define

(2.3) pLo

k “ L2k ` pk ` 2qJ2k ` δk,0p
1

8
`

3

2
q ´ J2k`3,

and

(2.4) xMo

k “ M2k ` 2pk ` 3qL2k ´ 2L2k`3 ´ 2pk ` 3qJ2k`3

` p
95

12
` 6k `

4

3
k2qJ2k `

23

4
δk,0 ` J2k`6,

where

(2.5) Jk “

$
’&
’%

u1´a{3 B
Btk

if k ą 0

0 if k “ 0

p´kqua{3´1tk if k ă 0,

and Lk and Mk are the standard generators of the Virasoro and W p3q-algebras
respectively. Namely

(2.6) Lk “
1

2

ÿ

a`b“k

:JaJb:,

(2.7) Mk “
1

3

ÿ

a`b`c“k

:JaJbJc:,

and :A: is the normal ordering of operator A. In particular, :AB: “ :BA:, while

:JaJb: “

#
JaJb if a ď b

JbJa otherwise.

Then Alexandrov proved [2] that for all k ě 0

(2.8) pLo

kτ1 “ 0 “ xMo

k τ1.

In addition, these operators satisfy the commutation relations of generators of the
W p3q-algebra:

rpLo

k,
pLo

ms “ 2pk ´mqpLo

k`m
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r xMo

k ,
pLo

ms “ 2pk ´ 2mqxMo

k`m ` 4mpm` 1qpLo

k`m.

As is the case with the W p3q-algebra in general, the commutator r xMo

k ,
xMo

ms

cannot be represented as a linear combination of generators pLo

ℓ and xMo

ℓ , but is

quadratic in pLo

ℓ .
It turns out for our purposes to be more convenient to work with the following

shifted operators:

pLk “ pLo

k

“ L2k ` pk ` 2qJ2k ` δk,0p
1

8
`

3

2
q ´ J2k`3(2.9)

xMk “ ´ xMo

k ` 2pk ` 2qpLk

“ ´M2k ` 2pL2k`3 ´ L2kq ` 2J2k`3(2.10)

` p
2

3
k2 ` 2k `

1

12
qJ2k `

3

4
δk,0 ´ J2k`6

3. Topological recursion

Topological recursion, as developed by Chekhov, Eynard and Orantin [15, 20],
originated as a method for calculating correlation functions for matrix models.
However, it was realized to be a more general construction, valid for any spectral
curve (defined below), even those not arising from matrix models. It was subse-
quently found to determine a large number of interesting enumerative and geometric
invariants (c.f. [7, 8, 17, 18, 22, 23, 24, 21, 31, 4, 19]).

The initial data needed to apply topological recursion consists of a spectral curve

pC, x, yq, where C is a Torelli marked compact Riemann surface, and x and y are
meromorphic functions on C. We require that x and y generate the function field
of C (i.e. KpCq “ Cpx, yq), and that x and y separate tangents, so that we do not
have dxppq “ 0 “ dyppq at any point p P C. We suppose that x has degree r, and
we call the zeros of dx the branch points of the spectral curve, denoted ta1, . . . , adu.

Given the data of a spectral curve, topological recursion allows for the construc-
tion of an infinite family of correlation functions Wg,n`1pz0, . . . , znq, defined for
any g, n ě 0. With the exception of W0,1 and W0,2, any correlation function Wg,n

is a symmetric meromorphic n-differential, with poles only at the branch points.
Although topological recursion is defined for spectral curves of arbitrary degree

r, we restrict to the case of r ď 3 for simplicity, and because that is sufficient
for the example at hand. We will also make the unecessary, though simplifying
assumption, that the spectral curve has genus 0.

Given a spectral curve, the base cases for the correlation function are given by

W0,1pzq “ ypzq dxpzq

W0,2pz0, z1q “ Bpz0, z1q “
dz0 dz1

pz0 ´ z1q2
.

We use topological recursion to calculate the remainder of the correlation functions,
which utilizes the following constructions.

Given a family of symmetric n-differentials tWg,nu, and ~z “ pz1, . . . , znq, we
define

E
p2qWg,n`1pv, w;~zq “ Wg´1,n`2pv, w, ~zq
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`
ÿ

g1`g2“g
Z1\Z2“~z

Wg1,|Z1|`1pv, Z1qWg2,|Z2|`1pw,Z2q,

E
p3qWg,n`1pw1, w2, w3;~zq “ Wg´2,n`3pw1, w2, w3, ~zq

`
ÿ

g1`g2“g´1

Z1\Z2“~z

Wg1,|Z1|`2pw1, w2, Z1qWg2,|Z2|`1pw3, Z2q

`
ÿ

g1`g2`g3“g
Z1\Z2\Z3“~z

3ź

i“1

Wgi,|Zi|`1pwi, Ziq,

and

P
pkq
g,n`1

pz, ~zq “
ÿ

tw1,...,wkuĂx´1pxpzqq

E
pkq
g,n`1

pw1, . . . , wk;~zq.

We also define the recursion kernel

Kpz0, zq “
1

rW0,1pzqr´1

ż z

ζ“0

Bpz0, ζq.

Then we have the following topological recursion equation, called the global
recursion in [9].

Theorem 3.1. The correlation functions for a spectral curve of degree r satisfy

0 “
1

2πi

¿

Γ

Kpz0, zq
rÿ

m“2

W0,1pzqr´mP
pmq
g,n`1

pz, ~zq,

where Γ is a contour that encloses all the branch points ta1, . . . , adu.

4. Master equation for open intersection numbers

In this section, we reframe Alexandrov’sW -constraint condition (2.8) as amaster

equation, in the sense of Kazarian and Zograf [28, 29]. We should point out that
although this approach to topological recursion was formalized by Kazarian and
Zograf, the idea was already present to some degree in [20].

The operators used to express the master equation are as follows.

δp2q “
8ÿ

k“0

dz

z2k`2

B

Bt2k`1

δp3q “
8ÿ

k“1

dz

z2k`1

B

Bt2k

δ “ δp2q ` δp3q

tp2q “
8ÿ

k“0

p2k ` 1qt2k`1z
2kdz

tp3q “
8ÿ

k“1

2kt2kz
2k´1dz

t “ tp2q ` tp3q
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Note that given any polynomial in t, the operator δ produces a Laurent differential

in z, which is a formal expression

8ÿ

k“´m

akptqzk dz,

for some finite m. As well, we define projection operators on the space of Laurent
differentials. In particular, Pp2q is the projection to the linear span of t dz

z2a`2 u8
a“0,

while Pp3q is the projection to the linear span of t dz
z2a`3 u8

a“0.
We then form the sum

L “
8ÿ

k“´1

u2k{3 dz

z2k`4

pLk

“
8ÿ

k“´1

u2k{3 dz

z2k`4

ˆ
´J2k`3 ` pk ` 2qJ2k ` L2k `

13

8
δk,0

˙
.

Term-by-term, we find that

´
8ÿ

k“´1

u2k{3 dz

z2k`4
J2k`3 “ ´

8ÿ

k“0

up2k´2q{3 dz

z2k`2
u1´p2k`1q{3 B

Bt2k`1

“ ´δp2q

8ÿ

k“´1

u2k{3 dz

z2k`4
pk ` 2qJ2k “ 2u´1t2

dz

z2
`

8ÿ

k“1

pk ` 2qu2k{3 dz

z2k`4
u1´2k{3 B

B2k

“ 2u´1t2
dz

z2
` u

ˆ
´

1

2z2
d

dz
`

3

2z3

˙
δp3q

8ÿ

k“´1

u2k{3 dz

z2k`4
L2k “ u´2

t21
2

dz

z2
`

8ÿ

k“´1

1

z2dz

ÿ

´a`b“2k

dz2

z´a`b`2
ata

B

Btb

`
8ÿ

k“1

u2
1

2z2 dz

ÿ

a`b“2k

dz2

za`b`2

B2

BtaBtb
.

We observe that the second term of the last equality is even in z, with order at
most z´2. Hence we find that

L “ ´δp2q `
13

8

dz

z4
` u´12t2

dz

z2
` u

ˆ
´

1

2z2
d

dz
`

3

2z3

˙
δp3q

`
u2

2z2dz

´`
δp2q

˘2
`

`
δp3q

˘2¯
` u´2

t21 dz

2z2

` P
p2q

„
1

z2 dz

`
tp3qδp3q ` tp2qδp2q

˘

In addition, we define

M “
8ÿ

k“´2

u2k{3`1
dz

z2k`7

xMk,

which, by a similar calculation as was done for L, reduces to

M “ ´δp3q `
dz

z3
p2u´1t1 ´ 4u´1t22 ´ 6u´1t1t3 ´ 5t4 ´ 2u´2t21t2q
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`
dz

z5

ˆ
´
5

2
t2 ´ u´1t21

˙
`

3u dz

4z7
`

2u

z3
δp2q `

u2

6z4

ˆ
d2

dz2
´

3

z

d

dz
´

9

2z2

˙
δp3q

`
u2

z2dz

´
δp2qδp3q ` δp3qδp2q

¯
` P

p3q

„
2

z2 dz

`
tp2qδp3q ` tp3qδp2q

˘

´
u3

z5 dz

´`
δp2q

˘2
`

`
δp3q

˘2¯
´ P

p3q

„
2u

z5 dz

`
tp2qδp2q ` tp3qδp3q

˘

´ P
p3q

„
1

z4 dz2

`
2tp2qtp3qδp2q ` tp2qtp2qδp3q ` tp3qtp3qδp3q

˘

´ P
p3q

„
u2

z4 dz2

`
tp2qδp2qδp3q ` tp2qδp3qδp2q ` tp3qδp2qδp2q ` tp3qδp3qδp3q

˘

´
u4

3z4 dz2

ˆ
δp2qδp2qδp3q ` δp2qδp3qδp2q ` δp3qδp2qδp2q ` δp3qδp3qδp3q

˙

If we define U piq “ δpiqF , for i “ 1, 2, then the fact that LeF “ 0 “ MeF implies

U
p2q “

13

8

dz

z4
` 2u´1t2

dz

z2
` u´2t21

dz

2z2
` u

ˆ
´

1

2z2
d

dz
`

3

2z3

˙
U

p3q

`
u2

2z2 dz

´`
U

p2q
˘2

`
`
U

p3q
˘2

` δp2q
U

p2q ` δp3q
U

p3q
¯

` P
p2q

„
1

z2 dz

`
tp2q

U
p2q ` tp3q

U
p3q

˘
,

and

U
p3q “

3

4
u
dz

z7
´

ˆ
5t4

dz

z3
`

5

2
t2
dz

z5

˙
` u´1

ˆ
p2t1 ´ 4t22 ´ 6t1t3q

dz

z3
´ t21

dz

z5

˙

´ 2u´2t21t2
dz

z3
`

2u

z3
U

p2q `
u2

6z4

ˆ
d2

dz2
´

3

z

d

dz
´

9

2z2

˙
U

p3q

`
u2

z2 dz

`
2U p2q

U
p3q ` δp2q

U
p3q ` δp3q

U
p2q

˘

´
u3

z5 dz

´`
U

p2q
˘2

`
`
U

p3q
˘2

` δp2q
U

p2q ` δp3q
U

p3q
¯

´
u4

3z4 dz2

„`
δp3q2 ` δp2q2

˘
U

p3q `
`
δp2qδp3q ` δp3qδp2q

˘
U

p2q `
`
U

p3q
˘3

` 3
`
U

p2q
˘2
U

p3q ` 3δp2q
`
U

p2q
U

p3q
˘

`
3

2
δp3q

`
U

p2q2 ` U
p3q2

˘

` P
p3q

„
2

z2 dz

`
tp2q

U
p3q ` tp3q

U
p2q

˘
´

2u

z5 dz

`
tp2q

U
p2q ` tp3q

U
p3q

˘

´
1

z4 dz2

´
2tp2qtp3q

U
p2q `

`
tp2q

˘2
U

p3q `
`
tp3q

˘2
U

p3q
¯

´
u2

z4 dz2

´
tp2q

`
2U p2q

U
p3q ` δp2q

U
p3q ` δp3q

U
p2q

˘

` tp3q
``
U

p2q
˘2

`
`
U

p3q
˘2

` δp2q
U

p2q ` δp3q
U

p3q
˘¯

.
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These equations simplify substantially if we introduce

Ũ “ U ´ u´2z2 dz ` u´2t ` u´1
dz

z
,

with U “ U p2q ` U p3q. In fact, we have

P
p2q

„
u2

2z2 dz

`
pŨ ´ Uq2 ` u´1dzp´

d

dz
`

1

z
qpŨ ´ Uq

˘

“
u´2t21
2z2

dz `
2u´1t2

z2
dz `

3dz

2z4

and

P
p3q

„
´

u4

3z4 dz2
`
pŨ ´ Uq3 ´ u´2

dz2

2
p
d2

dz2
´

3

z

d

dz
`

3

2z2
qpŨ ´ Uq

˘

“

#
3

4
u
dz

z7
´

ˆ
5t4

dz

z3
`

5

2
t2
dz

z5

˙
` u´1

ˆ
p2t1 ´ 6t1t3 ´ 4t22q

dz

z3
´ t21

dz

z5

˙

´ 2u´2t21t2
dz

z3

+
.

This allows us to write

P
p2q

„
u2

2z2 dz

ˆ
Ũ

2 ` δU ` u´1dz

ˆ
´
d

dz
`

1

z

˙
Ũ

˙
“ ´

dz

8z4

and

P
p3q

„
´

u4

3z4 dz2

ˆ
Ũ

3 ` 3ŨδU ` δ2U ´ u´2
dz2

2

ˆ
d2

dz2
´

3

z

d

dz
`

3

2z2

˙
Ũ

˙
“ 0.

An alternative formulation of the above master equations is obtained through
“renormalization.” In effect, one redefines the indeterminate form

δt “
dz2

z2

8ÿ

k“1

k,

and instead sets it equal to dz2

4z2 . Then we have

P
p2q

„
1

2η

`
Ũ

2 ` δŨ ` u´1
D1Ũ

˘
“ 0,

and

P
p3q

„
1

3η2
`
Ũ

3 ` 3

2
δŨ2 ` δ2Ũ ´ u´2

D2Ũ
˘

“ 0,

where

η “ ´z2 dz

D1 “ dz

ˆ
´
d

dz
`

1

z

˙

D2 “
dz2

2

ˆ
d2

dz2
´

3

z

d

dz
`

3

z2

˙
.

Although the renormalization seems arbitrary, it is well justified when one trans-
forms these master equations into an equivalent residue equation, as is done in
Section 5.
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We can make a further reduction by defining U “ Ũ ` δ. Then we have proven

Theorem 4.1.

P
p2q

„
1

2η
pU2 ` u´1

D1Uq ¨ 1


“ 0(4.1)

P
p3q

„
1

3η2
pU3 ´ u´2

D2Uq ¨ 1


“ 0.(4.2)

Remark 4.2. Kazarian [28] has shown that the master equation for the Witten-
Kontsevich τ function can be written in the form

P
p2q

„
1

2η
U2 ¨ 1


“ 0,

with identical initial conditions as the open intersection case, except for the lack of
the term u´1 dz

z
, and with the same renormalization condition on δt.

5. Residue formulation

In order to reformulate the master equations (4.1), (4.2) as an example of Eynard-
Orantin topological recursion [20], we must decompose the equation by genus and
marked points, convert the projection operators into residue integrals and finally,
write the equations using symmetric correlation differentials.

Lemma 5.1. Given a Laurent differential γpzq dz, we have

P
p2q rγpzq dzs “ Res

wÑ0

„
1

2

ˆ
1

z ´ w
´

1

z ` w

˙
γpwq dw



P
p3q rγpzq dzs “ Res

wÑ0

„
1

2

ˆ
1

z ´ w
´

1

z
`

1

z ` w
´

1

z

˙
γpwq dw



Proof. This is an easy consequence of the definition of a Laurent differential, and
from a direct calculation of the residues against the Laurent differential zk dz, for
any integer k. �

Remark 5.2. The integral operators used to replace the projection operators can
be expressed as

pp2qpz, wq “
1

2

ż w

ζ“0

Bpz, ζq ´
1

2

ż ´w

ζ“0

Bpz, ζq,

and

pp3qpz, wq “
1

2

ż w

ζ“0

Bpz, ζq `
1

2

ż ´w

ζ“0

Bpz, ζq,

respectively, where Bpz1, z2q is the normalized canonical bilinear differential of the
second kind defined on P1 (c.f. [25]), and w ÞÑ ´w is the unique involutive mapping
preserving the spectral curve x “ 1

2
w2 around the branch point at w “ 0. In

other words, our construction is quite general, and not necessarily restricted to the
example at hand.

To decompose the partition function by genus and marked points, we set

τ1 “ eF ,
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and

F pu, tq “
8ÿ

h“0

uh´2Fh{2ptq

Fgptq “
8ÿ

n“1

Fg,nptq,

where Fg,nptq is homogeneous of degree n in the variables t1, t2, . . .. Then we set

U0,1 “ ´z2 dz

U0,2 “ t

U 1

2
,1 “

dz

z
Ug,n`1 “ δFg,n`1 if 2g ´ 2 ` n` 1 ą 0 and n, 2g P Zě0.

After decomposing master equations (4.1), (4.2) by degree in both u and t, and
replacing the projection operators Ppiq with the appropriate residue integral, we
arrive at the following recursion relation, valid for all g, n ě 0 with 2g ´ 1 ` n ą 0
and 2g, n P Z:

(5.1) Ug,n`1pzq “ Res
wÑ0

#
Kp2qpz, wq

„
δUg´1,n`2pw,wq

`

no pg, n ` 1q termÿ

g1`g2“g
n1`n2“n`2

Ug1,n1
pwqUg2,n2

pwq ` D1Ug´ 1

2
,n`1pwq



`Kp3qpz, wq

„
δ2Ug´2,n`3pw,w,wq `

3

2
δ

ÿ

g1`g2“g´1

n1`n2“n`3

Ug1,n1
pwqUg2,n2

pwq

`

no pg, n ` 1q termsÿ

g1`g2`g3“g
n1`n2`n3“n`3

3ź

i“1

Ugi,ni
pwq ´ D2Ug´1,n`1pwq

+
,

where

Kpjqpz, wq “

ˆ
p´1qj

ż ´w

ζ“0

Bpz, ζq ´

ż w

ζ“0

Bpz, ζq

˙
1

2jp´w2 dwqj´1
,

and

Bpz1, z2q “
dz1dz2

pz1 ´ z2q2
.

Note that this formula is only valid under the convention that δU0,2 “ dz2

4z2 .
We now construct the correlation functions appearing in topological recursion

by setting

δi “
8ÿ

j“1

dzi

z
j`1

i

B

Btj

and defining

Wg,npz1, . . . , znq “ δ1 ¨ ¨ ¨ δnFg,nptq, if 2g ´ 2 ` n ą 0.
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The unstable correlation functions are defined as W0,1pzq “ ´z2 dz, W 1

2
,1pzq “ dz

z
,

and

W0,2pz1, z2q “ δ2U0,2pz1q

“
8ÿ

k“1

k
zk´1

1

zk`1

2

dz1dz2

“
dz1dz2

pz1 ´ z2q2
.

We also need the following renormalized correlation functions:

ĂWg,npz1, . . . , znq “ Wg,npz1, . . . , znq ´ δg,0δn,2
dxpz1qdxpz2q

pxpz1q ´ xpz2qq2
,

where x “ z2{2, and δn,m is the Dirac delta function, not the operator δi appearing
elsewhere in the paper. We note in particular, that

ĂW0,2pz, zq “
dz2

4z2
,

which is exactly the renormalized behavior we need for the topological recursion
formula.

To make the formulas a little more digestible, we use the notation ~z “ pz1, . . . , znq,

R
p2qWg,n`1pw;~zq “ ĂWg´1,n`2pw,w, ~zq

`

no pg, n ` 1q termsÿ

g1`g2“g
Z1\Z2“~z

Wg1,|Z1|`1pw,Z1qWg2,|Z2|`1pw,Z2q,

and

R
p3qWg,n`1pw;~zq “ Wg´2,n`3pw,w,w, ~zq

` 3
ÿ

g1`g2“g´1

Z1\Z2“~z

Wg1,|Z1|`1pw,Z1qĂWg2,|Z2|`2pw,w, Z2q

`

no pg, n ` 1q termsÿ

g1`g2`g3“g
Z1\Z2\Z3“~z

3ź

i“1

Wgi,|Zi|`1pw,Ziq

If we apply the operator δ1 ¨ ¨ ¨ δn to (5.1), then we find the following

Theorem 5.3. The correlation functions Wg,n for open intersection numbers obey

the topological recursion formula

(5.2)

Wg,n`1pz0, . . . , znq “ Res
wÑ0

#
Kp2qpz0, wq

„
R

p2qWg,n`1pw;~zq`D1Wg´1{2,n`1pw,~zq



`Kp3qpz0, wq

„
R

p3qWg,n`1pw;~zq ´ D2Wg´1,n`1pw,~zq

+
,

with initial conditions

W0,1pzq “ ´z2 dz
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W 1

2
,1pzq “

dz

z
W0,2pz1, z2q “ Bpz1, z2q,

where

D1 “ dz

ˆ
´
d

dz
`

1

z

˙

D2 “
dz2

2

ˆ
d2

dz2
´

3

z

d

dz
`

3

z2

˙
.

6. A conjectural refinement

One issue that arises in the above formulation of topological recursion for open
intersection numbers is that the correlators combine intersection numbers from a
union of disjoint moduli spaces. In particular, a given function Fh,n`1, for 2h, n P
Zě0, has contributions from moduli spaces of genus g curves with b boundary
components for all g, b with g ` b{2 “ h. If the contribution to Fh,n from genus g
surfaces with b boundary components is Fg,b,n, it is natural to try to introduce a
parameter Q, and write

Fh,npt, Qq “
ÿ

gPZ
0ďgďh

Q2ph´gqFg,2ph´gq,nptq,

as well as the associated correlators

Wg,k,n “ δ1 ¨ ¨ ¨ δnFg,k,n.

If such a decomposition is possible, we can resum to obtain correlators with only
integral genus parameter

Ωg,n “
8ÿ

k“0

QkWg,k,n.

This form of the correlators is required if one were to attempt to find a spectral
curve whose correlators under the standard theory of topological recursion calculate
open intersection numbers.

It is tempting to try to insert the Q grading into the topological recursion for-
mula (5.2) by replacing W 1

2
,1 ÞÑ QW 1

2
,1 and Di ÞÑ QiDi, as this would produce

correlation functions with terms of correct degree in Q. Unfortunately, this proves
unsuccessful as these Q-graded correlators Wg,npQ;~zq with 2g ´ 2 ` n ě 3 are not
symmetric. However, correlators with 2g ´ 2 ` n ă 3 match exactly to the corre-
lators coming from τQ, the Kontsevich-Penner matrix model. This motivates the
following

Conjecture 6.1. Let τQ “ eFQ , with τQ given by the Kontsevich-Penner matrix

model (2.2). Then the correlators Wg,npQ;~zq “ δ1 ¨ ¨ ¨ δnFg,npQ; tq given from the

expansion

FQptq “
ÿ

g,n

u2g´2Fg,npQ; tq

are the Q-graded correlators for open intersection numbers.

The conjecture is true for g “ 0, 1
2
, 1. In addition, the correlators of all aug-

mented genera for FQ exhibit the proper degree behaviour in Q. One difficulty
that arises is that moduli spaces with different numbers of boundary components



TOPOLOGICAL RECURSION FOR OPEN INTERSECTION NUMBERS 15

can have common boundary using the compactification of Solomon and Tessler.
Moreover, the boundary contributes non-trivially to the intersection numbers, re-
alized in the form of nodal ribbon graphs contributing to the total in Tessler’s
combinatorial model [33].

However, what seems to hold true, at least in the low genus examples that can
be calculated by hand, is that the ribbon graphs naturally sort themselves into
neat piles, each contributing to a term with fixed degree in Q, and the resulting
expression matching the one predicted by the conjecture. So, while the evidence in
support of Conjecture 6.1 is hardly definitive, it certainly seems promising enough
to warrant further investigation.

7. Quantum curve equation

In this section we derive a quantum curve for open intersection numbers. In
topological recursion, the quantum curve is obtained from the spectral curve via
quantization, whereby we replace y with ~

d
dx
. Then, in many cases, and with the

proper choice of ordering of the now non-commuting variables, one obtains the
quantum curve equation

P px̂, ŷqeΨ “ 0,

where Ψ is the principal specialization of the partition function. In our case, it can
be realized by substituting

Ψ̃Q “ F

ˇ̌
ˇ̌

uÞÑ~

tk ÞÑ ~

kzk

ΨQ “ Ψ̃Q `
z3

3
´

3

4
log

z2

2
.

It also corresponds with taking N “ 1 in the matrix integral (2.2). Hence, by work
of Brezin and Hikami [11], we have the quantum curve equation

Theorem 7.1. If ΨQ is the principal specialization of FQ and x “ 1

2
z2, then

ˆ
~
3
d3

dx3
´ 2~x

d

dx
` 2~pQ´ 1q

˙
eΨQ “ 0.

The semi-classical limit is, for all values of Q,

y3 ´ 2xy “ 0.

We note in particular that the spectral curve is reducible and has degree 3. Since
there is currently no known way of calculating topological recursion for a general
reducible spectral curve, it is not surprising that the formulas we obtain are not
in exact correspondence with the standard topological recursion. Whether or not
this example can be generalized to other reducible curves is a topic for future work.
However, the fact that the curve is degree 3 does help explain why the formula we
obtain most closely matches topological recursion in the rank 3 case.
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